Cavity mode emission in weakly coupled quantum dot--cavity systems.

نویسندگان

  • T Tawara
  • H Kamada
  • S Hughes
  • H Okamoto
  • M Notomi
  • T Sogawa
چکیده

We study the origin of bright leaky-cavity mode emission and its influence on photon statistics in weakly coupled quantum dot - semiconductor cavity systems, which consist of a planar photonic-crystal and several quantum dots. We present experimental measurements that show that when the system is excited above the barrier energy, then bright cavity mode emissions with nonzero detuning are dominated by radiative recombinations of deep-level defects in the barrier layers. Under this excitation condition, the second-order photon autocorrelation measurements reveal that the cavity mode emission at nonzero detuning exhibits classical photon-statistics, while the bare exciton emission shows a clear partial anti-bunching. As we enter a Purcell factor enhancement regime, signaling a clear cavity-exciton coupling, the relative weight of the background recombination contribution to the cavity emission decreases. Consequently, the anti-bunching behavior is more significant than the bare exciton case - indicating that the photon statistics becomes more non-classical. These measurements are qualitatively explained using a medium-dependent master equation model that accounts for several excitons and a leaky cavity mode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity.

We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rot...

متن کامل

Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system.

We present a rigorous medium-dependent theory for describing the quantum field emitted and detected from a single quantum dot exciton, strongly coupled to a planar photonic crystal nanocavity, from which the exact spectrum is derived. By using simple mode decomposition techniques, this exact spectrum is subsequently reduced to two separate user-friendly forms, in terms of the leaky cavity mode ...

متن کامل

Photon-mediated electron transport in hybrid circuit-QED

We investigate photon-mediated transport processes in a hybrid circuit-QED structure consisting of two double quantum dots coupled to a common microwave cavity. Under suitable resonance conditions, electron transport in one double quantum dot is facilitated by the transport in the other dot via photon-mediated processes through the cavity. We calculate the average current in the quantum dots, t...

متن کامل

Generation and transfer of single photons on a photonic crystal chip.

We present a basic building block of a quantum network consisting of a quantum dot coupled to a source cavity, which in turn is coupled to a target cavity via a waveguide. The single photon emission from the high-Q/V source cavity is characterized by twelve-fold spontaneous emission (SE) rate enhancement, SE coupling efficiency beta ~ 0.98 into the source cavity mode, and mean wavepacket indist...

متن کامل

Cavity-QED assisted attraction between a cavity mode and an exciton mode in a planar photonic-crystal cavity.

The photoluminescence spectra from a quantum-dot exciton weakly-coupled to a planar photonic-crystal cavity is experimentally investigated by temperature tuning. Significant resonance shifts of the cavity mode are observed as the cavity mode spectrally approaches that of the exciton mode, showing the appearance of cavity-to-exciton attraction or mode pulling. Cavity-mode spectral shifts are als...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 17 8  شماره 

صفحات  -

تاریخ انتشار 2009